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MEASUREMENT OF TEMPERATURE DISTRIBUTION
USING THE CURRENT INJECTION MRI

S.Y. Lee', H.S. Khangl, J.S. Hwangl, M.H. Cho', and E.J. Woo’

'Graduate School of East-West Medical Sciences, Kyung Hee University, Kyungki, Korea
*School of Electronics and Information, Kyung Hee University, Kyungki, Korea

Abstract-A new temperature distribution measurement method
using the current injection MRI is proposed. Since electrical
impedance of biological tissues is very sensitive to their temperature,
formation of current density inside the tissues is strongly dependent
on the temperature distribution inside the tissues when external
current is applied to the tissues during the current injection MRI.
Therefore, the phase change at the image domain has correlations
with the temperature change inside the tissues. Both simulation and
experimental results have shown that a small change of temperature
distribution can be measured using the current injection MRI.
Keywords-Current injection, electrical impedance, magnetic
resonance imaging, temperature measurement

[. INTRODUCTION

Recently, many research groups have been developing
temperature imaging techniques for interventional studies using
an MRI(Magnetic Resonance Imaging) system[1,2]. Among the
MRI interventional technologies, the imaging guided thermal
therapy is believed to be of foremost importance in the clinical
area. In the imaging guided thermal therapy, accurate monitoring
of the temperature distribution inside the human body is very
crucial. Among the many MR temperature imaging techniques
reported so far, the chemical shift temperature imaging technique
is known as the most efficient one[2]. However, the technique
has not been widely used clinically because of its very low
sensitivity to the temperature. In this paper, we have analyzed the
effect of local temperature rise on the phase image obtained with
external current injection. Since the temperature coefficient of
tissues' electrical impedance is as big as several %/°C[3], it is
expected that the local temperature rise can make a big change in
the phase image. Simulation results obtained by the finite element
method and experimental results obtained by a 0.3 Tesla MRI
system are presented.

II. METHODOLOGY

To analyze the effect of local temperature rise on the phase
image obtained with the current injection MRI, we have made a
simulation phantom as shown in Fig. 1. The phantom has two
regions. Region 1| represents the background region and region 2
represents the region of temperature rise. It is assumed that the
electrical conductivities at both regions are the same initially, but
the electrical conductivity 0, has increased at the time of current
injection. On top and bottom of the phantom are electrodes to
inject electrical current into the phantom. A current source injects
bipolar current pulses into the phantom. A typical spin echo pulse
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sequence combined with the bipolar current pulse is shown in Fig.
2. When the current pulse is applied to the phantom, the current
diffuses inside the phantom producing a current density J(x,y).
The current density, then, generates an extra magnetic field
Beu(x,y). Since formation of the current density J(x,y) is governed
by the conductivity distribution o(x,y), the extra magnetic field is
also related with the conductivity distribution.

The phase image 6(x,y) obtained by the current injection MRI
will be given by,

Q(X,y) = ZyBexl(xxy)T (1)

Region 1: 01

10 cm

Fig. 1. The FEM simulation phantom. Region 2 represents the region
of local temperature increase.
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Fig. 2. The current injection MRI pulse sequence
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where T'is the current pulse width and y is the gyromagnetic ratio. I _ _

To analyze the effects of conductivity variation caused by a (A/m?] glzg‘;’ 5228'%5
e TS 1 </ 2 .

thermal therapy procedure, we have calculated phase variation / 0,=0.7, 0,=0.7

O(x,y) inside the phantom using the finite element method. The I /

conductivity variation was given by the order of 5% considering
that the temperature coefficient of the ionic solution is about
2%/°C.

III. RESULTS

We have analyzed the effect of local conductivity variation on
the phase image using the finite element method. In the analysis,
the current amplitude was set to 100mA which is considered not f
to give hazardous effects on the living tissue. The bipolar current

pulse width was set to 50 msec so that the bipolar current pulse ray " v 2 a3 a4 g Xem
can be easily adopted in the typical spin echo pulse sequence. In

Fig.3, the current density changes along the horizontal axis at the Fig. 3. Current densities along the horizontal axis at the center
center of the phantom are shown as the electrical conductivity of the phantom.

inside the region 2 increases.

In Fig. 3, we can observe increase of current density inside
the region 2 as the electrical conductivity at the region 2
increases. The current density change causes the magnetic field
distribution change inside the phantom. We have calculated the
magnetic field change as follows,

AB(x.y)= Beu(x,y,0:=A) - Beu(x.y,0:=B) )

In Fig. 4, we show AB(x,y) when A=0.77 siemens/m and
B=0.70 siemens/m. In the region 2 where electrical conductivity
has changed due to the temperature rise, AB(x,y) increases in a
linear fashion along the horizontal direction. The maximum
AB(x,y) appears at the boundary of the region 1 and 2. With the
current of 100 mA, the maximum AB is about 1.5%<10® Tesla.
This magnetic field change can H,lake ,a phase change of 23 Fig. 4. Magnetic field change when the electrical conductivity at the
degrees when the current pulse width is 50 msec. The phase region 2 is changed from 0.7 siemens/m to 0.77 siemens/m.
change, 23 degrees, is made by 10 % rise of the conductivity in
the region 2. Considering that the average temperature coefficient
of biological tissues' electrical conductivities is about 2%/°C, it
can be said that the phase change is caused by 5 degree
temperature rise.

To wverify the simulation works, we have performed
experiments using a 0.3 Tesla animal MRI system. The
experiment set-up is shown in Fig. 5. Constant

A cylindrical phantom with the diameter of 70mm and the current (D I CuS0, + NacH
height of 80mm is made of the mixture of NaCl and CuSO, souree solution
solution. The electrical conductivity of the phantom is about 1.3
siemens/m when the temperature is 25°C. With a constant current
source, we applied bipolar current pulses to the phantom. The
amplitude of the current pulse was 33 mA and the pulse width
was 48 msec. In Fig. 6, we show some cut views of the phase
images for some phantom temperatures. The image was obtained
with TR=300msec and TE=100msec. The imaging matrix size Fig. 5. Experiment set-up to measure phase changes caused
was 128*128. In Fig. 6, we can observe increase of phase change by temperature rise inside the phantom.
as the phatom temperaure rises.
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Fig. 6. Cut views of the phase images when the phantom temperature
is 25°C, 35°C, and 45 °C.

IV. DISCUSSIONS AND CONCLUSIONS

We have found that the local conductivity change, caused by
the temperature rise during a thermal therapy, makes quite
measurable phase changes in the current injection MRI.

30f3

Although it is necessary to inject electrical current into the
tissue of interest during the scan, we think that the current
injection MRI technique could be used to monitor the tissue
temperature during the thermal therapy. To reconstruct
temperature maps using the phase change information, we need
to adopt iterative reconstruction procedures similar to the one
used in electrical impedance tomography. In addition,
temperature calibration phantoms without any current insulating
barriers inside them have to be developed for efficient and
accurate temperature calibrations. Even though we have not yet
developed a technique for reconstructing the temperature map
from the phase image, we believe that the phase change
information can be used to monitor the tissue temperature.
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